196 research outputs found

    Age differences in children's referential communication performance : an investigation of task effects

    Get PDF

    Social and motivational influences on reading

    Get PDF
    Pages numbered 1-70Bibliography: p. 47-69Supported in part by the National Institute of Education under contract no. NIE-400-81-003

    Retired A Stars and Their Companions: Exoplanets Orbiting Three Intermediate-Mass Subgiants

    Get PDF
    We report precision Doppler measurements of three intermediate-mass subgiants from Lick and Keck Observatories. All three stars show variability in their radial velocities consistent with planet-mass companions in Keplerian orbits. We find a planet with a minimum mass of 2.5 Mjup in a 351.5 day orbit around HD 192699, a planet with a minimum mass of 2.0 Mjup in a 341.1 day orbit around HD 210702, and a planet with a minimum mass of 0.61 Mjup in a 297.3 day orbit around HD 175541. Stellar mass estimates from evolutionary models indicate that all of these stars were formerly A-type dwarfs with masses ranging from 1.65 to 1.85 Msun. These three long-period planets would not have been detectable during their stars' main-sequence phases due to the large rotational velocities and stellar jitter exhibited by early-type dwarfs. There are now 9 "retired" (evolved) A-type stars (Mstar > 1.6 Msun) with known planets. All 9 planets orbit at distances a \geq 0.78 AU, which is significantly different than the semimajor axis distribution of planets around lower-mass stars. We examine the possibility that the observed lack of close-in planets is due to engulfment by their expanding host stars, but we find that this explanation is inadequate given the relatively small stellar radii of K giants (Rstar < 32 Rsun = 0.15 AU) and subgiants (Rstar < 7 Rsun = 0.03 AU). Instead, we conclude that planets around intermediate-mass stars reside preferentially beyond ~0.8 AU, which may be a reflection of different formation and migration histories of planets around A-type stars.Comment: 31 pages, 9 figures, 6 tables, ApJ accepted, corrected minor typo

    A New Planet Around an M Dwarf: Revealing a Correlation Between Exoplanets and Stellar Mass

    Get PDF
    We report precise Doppler measurements of GJ317 (M3.5V) that reveal the presence of a planet with a minimum mass Msini = 1.2 Mjup in an eccentric, 692.9 day orbit. GJ317 is only the third M dwarf with a Doppler-detected Jovian planet. The residuals to a single-Keplerian fit show evidence of a possible second orbital companion. The inclusion of an additional Jupiter-mass planet (P = 2700 days, Msini = 0.83 Mjup) improves the quality of fit significantly, reducing the rms from 12.5 m/s to 6.32 m/s. A false-alarm test yields a 1.1% probability that the curvature in the residuals of the single-planet fit is due to random fluctuations, lending additional credibility to the two-planet model. However, our data only marginally constrain a two-planet fit and further monitoring is necessary to fully characterize the properties of the second planet. To study the effect of stellar mass on Jovian planet occurrence we combine our samples of M stars, Solar-mass dwarfs and intermediate-mass subgiants. We find a positive correlation between stellar mass and the occurrence rate of Jovian planets within 2.5 AU; the former A-type stars in our sample are nearly 5 times more likely than the M dwarfs to harbor a giant planet. Our analysis shows that the correlation between Jovian planet occurrence and stellar mass remains even after accounting for the effects of stellar metallicity.Comment: ApJ accepted, 27 pages, 6 figures, 3 table

    The Prograde Orbit of Exoplanet TrES-2b

    Get PDF
    We monitored the Doppler shift of the G0V star TrES-2 throughout a transit of its giant planet. The anomalous Doppler shift due to stellar rotation (the Rossiter-McLaughlin effect) is discernible in the data, with a signal-to-noise ratio of 2.9, even though the star is a slow rotator. By modeling this effect we find that the planet's trajectory across the face of the star is tilted by -9 +/- 12 degrees relative to the projected stellar equator. With 98% confidence, the orbit is prograde.Comment: ApJ, in press [15 pages

    A Long-Period Jupiter-Mass Planet Orbiting the Nearby M Dwarf GJ849

    Get PDF
    We report precise Doppler measurements of GJ849 (M3.5V) that reveal the presence of a planet with a minimum mass of 0.82 Mjup in a 5.16 year orbit. At a = 2.35 AU, GJ849b is the first Doppler-detected planet discovered around an M dwarf to orbit beyond 0.21 AU, and is only the second Jupiter mass planet discovered around a star less massive than 0.5 Msun. This detection brings to 4 the number of M stars known to harbor planets. Based on the results of our survey of 1300 FGKM main--sequence stars we find that giant planets within 2.5 AU are ~3 times more common around GK stars than around M stars. Due to the GJ849's proximity of 8.8 pc, the planet's angular separation is 0."27, making this system a prime target for high--resolution imaging using adaptive optics and future space--borne missions such as the Space Interferometry Mission. We also find evidence of a linear trend in the velocity time series, which may be indicative of an additional planetary companion.Comment: 12 pages, 3 figues, 2 tables, PASP Accepte

    Measurement of the Spin-Orbit Alignment in the Exoplanetary System HD 189733

    Get PDF
    We present spectroscopy of a transit of the exoplanet HD 189733b. By modeling the Rossiter-McLaughlin effect (the anomalous Doppler shift due to the partial eclipse of the rotating stellar surface), we find the angle between the sky projections of the stellar spin axis and orbit normal to be lambda = -1.4 +/- 1.1 deg. This is the third case of a ``hot Jupiter'' for which lambda has been measured. In all three cases lambda is small, ruling out random orientations with 99.96% confidence, and suggesting that the inward migration of hot Jupiters generally preserves spin-orbit alignment.Comment: ApJ Letters, in pres

    Stellar Spin-Orbit Misalignment in a Multiplanet System

    Full text link
    Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple co-planar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disruption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting co-planar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial-velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.Comment: Accepted for publication in Science, published online on October 17 2013; PDF includes main article and supplementary materials (65 pages, 27 figures, 7 tables); v2: small correction to author lis

    First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)

    Full text link
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m s1^{-1} over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    corecore